Section 1: Chemical Product and Company Identification

Material Name: Boron Trifluoride
Synonyms: Trifluoroborane, boron fluoride
Chemical Formula: BF$_3$

Manufacturer: Voltaix, LLC
Post Office Box 5357, North Branch, New Jersey 08876-5357, USA
Voice: 908-231-9060 or 800-VOLTAIX, Facsimile: 908-231-9063

This MSDS is Copyrighted, Voltaix, 2010. Permission is hereby granted to duplicate it, in its entirety, for distribution with this material.

Section 2: Composition/Information on Ingredients

Component	CAS Registry Number	Concentration	Exposure Guidelines
Boron Trifluoride | 7637-07-2 | 100% | 1 ppm TLV-TWA (ACGIH)

Section 3: Hazards Identification

EMERGENCY OVERVIEW
DANGER! TOXIC, CORROSIVE.
Can cause burns. May be fatal if inhaled. Boron trifluoride is a colorless gas with a pungent odor. It fumes to form a dense white cloud in moist air. The immediate health hazard is that it is a poison gas.

NFPA 704 Rating (NFPA 49-1991):
Health 4 Fire 0 Reactivity 1 Special None

Potential Health Effects

Routes of Exposure:
Inhalation, skin, eye and mucous membrane contact.

Lengths of Exposure:
Boron trifluoride has been found in animal studies to be toxic in acute (4 hour) and subchronic (several months) tests.

Severity of Effect:
Corrosive. May be fatal if inhaled.

Target Organs:
Lungs, blood, bones and teeth.

Type of Effect:
Acute, high concentration exposures produce pulmonary irritation. Subchronic, low concentration exposures also produce generalized effects of fluorine exposure, including hypocalcemia.

Signs and Symptoms of Exposure:
Acute exposure: coughing, shortness of breath, headache, vertigo, chills and nausea. Subchronic: dental fluorosis, increased bone, serum and urinary fluoride levels, hypocalcemia.

Medical Conditions that may be Aggravated by Exposure:
None identified.

Reported Carcinogenic and Reproductive Effects:

MSDS Number: B020
Revised: 20 October 2010
Section 4: First Aid Measures

Inhalation
This is the primary route of exposure.
1) Remove the affected person from the gas source or contaminated area. Note: Personal Protective Equipment (PPE), including positive pressure, self contained breathing apparatus, may be required to assure the safety of the rescuer.
2) Give the victim six (6) calcium gluconate tablets with water, if conscious. Follow up immediately with medical attention at a medical facility at which the treatment protocol for HF inhalation is to be followed.
3) If the affected person is not breathing spontaneously, administer rescue breathing.
4) If the affected person does not have a pulse, administer CPR.
5) If medical oxygen and appropriately trained personnel are available, administer 100% oxygen to the affected person.
6) Summon an emergency ambulance. If an ambulance is not available, contact a physician, hospital, or poison control center for instruction.
7) Keep the affected person warm, comfortable, and at rest while awaiting professional medical care. Monitor the breathing and pulse continuously. Administer rescue breathing or CPR if necessary.

Skin Contact
Flush with a copious stream of water while removing contaminated clothing. Continue flushing until the professional medical assistance arrives, but for no less than fifteen minutes. Apply calcium gluconate gel to the affected area. Assume the patient has also been exposed by inhalation and obtain professional medical assistance immediately. The effects of skin exposure may be delayed.

Eye Contact
Flush continuously with clean water until the professional medical assistance arrives, but for no less than thirty minutes. Continuation of flushing until patient is transferred to an ophthalmologist or emergency physician is recommended.

Ingestion
Ingestion is not an observed route of exposure to gaseous hazardous materials.

Chronic Effects
Dental fluorosis, increased bone, serum and urinary fluoride levels, hypocalcemia.

Note to Physicians:
The reaction products of boron trifluoride and moist air or water are fluoboric and boric acids. Therefore, skin and eye burns should be treated as exposures to acidic fluorine compounds, e.g., hydrofluoric acid. Consider the use of such agents as benzalkonium chloride, magnesium sulfate, and calcium gluconate. Keep under medical observation for 72 hours for delayed onset of pulmonary edema.

Section 5: Fire Fighting Measures

Flammability and Explosivity
Flash Point:
Not applicable, this material is a nonflammable gas.

Flammability Limits in Air (% by volume):
Upper: Not applicable Lower: Not applicable
This material is a nonflammable gas.
Autoignition Temperature:
Not applicable, this material is a nonflammable gas.

Flammability Classification (per 29 CFR 1910.1200):
Nonflammable gas.

Known or Anticipated Hazardous Products of Combustion:
Not applicable, this material is a nonflammable gas.

Properties that may Initiate or Intensify Fire:
Heating cylinder to the point of activating the pressure relief device.

Reactions that Release Flammable Gases:
None.

Extinguishing Media
None.

Fire Fighting Instructions
Cool the cylinder and surroundings with water from a suitable distance. Excessive pressure may develop in gas cylinders exposed to fire, which may result in explosion, regardless of the cylinder's content. Cylinders with pressure relief devices (PRD's) may release their contents through such devices if the cylinder is exposed to fire. Cylinders without PRD's have no provision for controlled release and are therefore more likely to explode if exposed to fire.

Note: If boron trifluoride is released, the water used for fire suppression and cooling may be contaminated with fluorine compounds. The discharge of such compounds to the sewer system or the environment may be restricted, requiring the containment and proper disposal of the water.

Positive pressure, self contained breathing apparatus is required for all fire fighting involving hazardous materials. Full structural fire fighting (bunker) gear is the *minimum* acceptable attire. The need for proximity, entry, and flashover protection and special protective clothing should be determined for each incident by a competent fire fighting safety professional.

Section 6: Accidental Release Measures

Containment
This material is a gas at atmospheric conditions. The only means of containment is the enclosure of the space into which the material is released. Such containment is described in Section 7.

Clean Up
Clean up consists of passing the entire gas volume of the enclosure through appropriate exhaust gas treatment equipment (EGTE). Purge the enclosure with a non-reactive gas, such as nitrogen, through the EGTE until an acceptably low level of contamination remains. Equipment contaminated by this material must then be cleaned or decommissioned appropriately.

Evacuation
If the release is not contained in an appropriate device or system, all personnel not appropriately protected (see Section 8) must evacuate the contaminated spaces. Consider evacuation of additional areas, as a precaution against the spread of the release.

Special Instructions
The water used for cleanup may be contaminated with fluorine compounds. The discharge of such compounds to the sewer system or the environment may be restricted, requiring the containment and proper disposal of the water.

Section 7: Handling and Storage

Handling
Handle this material only in sealed, purged systems. The design of handling systems for hazardous materials is beyond the scope of this MSDS, and should be performed by a competent, experienced professional. Consider the use of doubly-contained piping; diaphragm or bellows sealed, soft seat valves; backflow prevention devices; flash arrestors; and flow monitoring or limiting devices. Gas cabinets, with appropriate exhaust treatment, are recommended, as is automatic monitoring of the secondary enclosures and work areas for release.

Handle sealed gas cylinders in accordance with CGA P-1, *Safe Handling of Compressed Gases in Containers*.

Some material may have accumulated behind the outlet plug. Face the outlet away from you and wear appropriate protective equipment when removing the plug to connect the cylinder to your system.

Never introduce any substance into a gas cylinder. If you believe your cylinder may have been contaminated, notify Voltaix immediately. Provide as much information as possible on the nature and quantity of contamination.

Storage

Store cylinders in accordance with CGA P-1, *Safe Handling of Compressed Gases in Containers*, local building and fire codes and other relevant regulations. Materials should be segregated, by the hazards they comprise, for storage.

Protect the cylinders from direct sunlight, precipitation, mechanical damage, and temperatures above 55 °C (130 °F).

Ship and store cylinders with the outlet plug and valve protective cap in place.

Section 8: Exposure Control/Personal Protection

Engineering Controls

Local exhaust is required. Secondary containment, with appropriate exhaust gas treatment, is strongly encouraged and is required in some jurisdictions.

Monitor the work area and the secondary containment continuously for release of the material. Automatic alerting of personnel and automatic shutdown of flow are appropriate in most applications and are required in some jurisdictions.

Purge all primary containment systems with a nonreactive gas, such as nitrogen, before introducing boron trifluoride.

Personal Protective Equipment (PPE)

Respiratory Protection:

Positive pressure, full face, air supplied breathing apparatus should be used for work within the secondary containment system if a leak is suspected or the primary containment is to be opened, *e.g.*, for a cylinder change. Air supplied breathing apparatus is required for response to demonstrated or suspected releases from the primary containment.

Eye/Face Protection:

When using respiratory protection as described above, use a face mask that provides splash and impact protection for the face and eyes. For handling sealed cylinders, wear safety glasses.

Skin Protection:

Wear appropriate gloves when handling sealed cylinders. Use gloves and other skin protection, as assigned by a competent safety professional, when working within the secondary enclosure with the primary enclosure compromised, *e.g.*, cylinder changing, to protect from exposure to the material. For response to demonstrated or suspected releases from the primary containment, the need for whole-body exposure protection should be determined by a competent safety professional.

Other Protection:

Wear appropriate protective footwear when moving cylinders. Select per OSHA 29CFR1901.132 and 1910.133.

Exposure Guidelines
Section 9: Physical and Chemical Properties

Notes: 1) "N/A" means not applicable.
2) Unless otherwise specified, properties are reported at 0 °C (32 °F) and 1 atmosphere (1.0 bar, 14.7 psia).

<table>
<thead>
<tr>
<th>Property</th>
<th>Boron trifluoride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>colorless</td>
</tr>
<tr>
<td>Odor</td>
<td>pungent</td>
</tr>
<tr>
<td>Physical state at atmospheric conditions</td>
<td>gas</td>
</tr>
<tr>
<td>pH</td>
<td>N/A</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>49.75 bar (721 psia) at -12.25 °C (10 °F)</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>2.867 g/L at 20 °C (68 °F)</td>
</tr>
<tr>
<td>Boiling point (at 1 atm)</td>
<td>-99.8 °C (-147.8 °F)</td>
</tr>
<tr>
<td>Melting point</td>
<td>-128.4 °C (-199.1 °F)</td>
</tr>
<tr>
<td>Solubility in water (v/v)</td>
<td>N/A, reacts with water</td>
</tr>
<tr>
<td>Specific gravity of liquid (water = 1)</td>
<td>1.571 at -99.9 °C (-147.8 °F)</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>67.81</td>
</tr>
</tbody>
</table>

Section 10: Stability and Reactivity

Chemical Stability:
Boron trifluoride is not known to decompose thermally.

Conditions to Avoid:
Exposure to air.

Incompatibility with Other Materials:
Water, alkali metals, alkaline earth metals (except magnesium), alkyl nitrates, polymerizable materials.

Hazardous Decomposition, Reaction and Oxidation (other than burning) Products:
Reaction with water produces fluoboric acid and boric acid.

Hazardous Polymerization:
Boron trifluoride does not polymerize, but does catalyze the polymerization of other materials.

Section 11: Toxicological Information

Acute Data (by route):
Exposure by inhalation: LC₅₀, 4-hour, albino rat 420 ppm. The primary effect is the production of respiratory irritation. Reaction with air or water may produce irritation of skin, eyes and mucous membranes.

Chronic and Subchronic Data:
Two of forty rats exposed to 6 ppm for 6 hours/day, 5 days/week for 13 weeks exhibited renal toxicity and signs of respiratory irritation. Six month exposures of rats, rabbits and guinea pigs produced dental fluorosis and pneumonitis at similar levels. This material is listed in the Registry of Toxic Effects of Chemical Substances (RTECS), but no information on its carcinogenicity is available.

Special Studies:
None known to Voltaix

Section 12: Ecological Information
Ecotoxicity:
LC₅₀ (96 hour, rainbow trout) 102 micrograms/liter.
EC₅₀ (48 hour, water flea) 46 micrograms/liter.

Environmental Fate:
Hydrolyzes to fluoboric and boric acids.

Section 13: Disposal Considerations

Classification under RCRA, 40 CFR 261:
This material meets the criteria for an "acute hazardous waste".

US EPA waste number and descriptions:
None.

Special Instructions and Limitations:
Treat process and other exhaust streams appropriately before release to the atmosphere.

Notice:
The information above is derived from Voltaix's interpretation of the US federal laws, regulations and policies concerning the material, as shipped by Voltaix, at the time this MSDS was prepared. Federal controls are subject to change and state and local controls may also apply. Proper waste disposal is the responsibility of the owner of the waste. The user is encouraged to consult with appropriate experts in developing a disposal plan.

Section 14: Transport Information

Basic Description:
Boron Trifluoride, Division 2.3 (Toxic Gas), 8 (Corrosive), UN 1008
Toxic - Inhalation Hazard, Hazard Zone B.

Additional Information for shipment by water:
IMDG Page Number 2107.

Additional Information for shipment by air:
Air transportation is not permitted.

Section 15: Regulatory Information

TSCA Status:
This material is listed in the index of chemical substances.

CERCLA Reportable Quantity (40CFR302.4):
This material is not listed.

SARA Title III Status (Section 302 (40CFR355), Section 311/312, Section 313 (40CFR372)):
40CFR355 lists boron trifluoride as an Extremely Hazardous Substance with a Threshold Planning Quantity (TPQ) of 227 kg (500 lbs.) and a Reportable Quantity (RQ) of 227 kg (500 lbs.).
40CFR372 lists boron trifluoride.

Note: State and local requirements may be more stringent.

Section 16: Other Information

References

Revision Indication
21 July 2006 – Revise to reflect company name change and to reflect new proper shipping name.
20 October 2010 – Transportation section revised to add division 8 classification.

Disclaimer
Voltaix cannot guarantee that these are the only hazards that exist. Users are solely responsible for the safe storage, handling, use and disposal of this material, and for compliance with the applicable laws, regulations and accepted practices.

Voltaix makes no representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose, or any other nature.